

    

        Mayfly

        v0.1.0


          [image: Logo]



    


  

    Table of contents

    
      



      	🪰 Mayfly


      	Changelog





    	Guides
      


      	Getting Started with Mayfly


      	Deployment Guide



      

    




        	
          Modules
          


      	Mayfly


      	Mayfly.Error


      	Mayfly.Handler


      	Mayfly.Helpers


      	Mayfly.Loop


      	Mayfly.Runtime


      	Mayfly.Supervisor





        



          	
            Mix Tasks
            

                	mix lambda.build


            

          


      

    

  

    🪰 Mayfly

  [image: Mayfly Logo]
  A lightweight AWS Lambda Custom Runtime for Elixir

  
  ![Version](https://img.shields.io/badge/version-0.1.0-blue)
  ![Elixir](https://img.shields.io/badge/elixir-%3E%3D%201.15-blueviolet)
  ![License](https://img.shields.io/badge/license-MIT-green)
Why Mayfly?
Mayfly lets you leverage the full power of Elixir in AWS Lambda without compromise. Run your Elixir code in a serverless environment with:
	Zero Boilerplate - Focus on your business logic, not Lambda implementation details
	Native Elixir Experience - Use the same coding patterns and libraries you love
	Optimized Performance - Designed specifically for Elixir's strengths in AWS Lambda
	Proper Error Handling - Get meaningful stack traces and error reports

Unlike generic custom runtimes, Mayfly is purpose-built for Elixir, bringing the language's reliability and expressiveness to serverless functions.
Quick Start
# 1. Add Mayfly to your dependencies
# In mix.exs
def deps do
  [
    {:mayfly, github: "bmalum/mayfly"}
  ]
end

# 2. Create your handler function
defmodule MyFunction do
  def handle(event) do
    {:ok, %{message: "Hello from Elixir!", event: event}}
  end
end

# 3. Build and deploy
# Terminal
$ mix lambda.build --zip
# Upload lambda.zip to AWS Lambda and set handler to "Elixir.MyFunction.handle"
Table of Contents
	Features
	Requirements
	Installation
	Usage
	Documentation
	Configuration
	Error Handling
	Deployment
	Performance
	Troubleshooting
	Roadmap
	Community & Contributing
	License

Features
	Full Elixir Support: Run any Elixir code in AWS Lambda, including GenServers and OTP applications
	Simple API: Clean, idiomatic interface for Lambda functions with minimal boilerplate
	Robust Error Handling: Get meaningful error reports with proper Elixir stacktraces
	Build Tooling: Mix tasks for packaging and deployment with Docker and local build support
	Flexible Integration: Works seamlessly with API Gateway, S3, EventBridge and other AWS services

Requirements
	Elixir ~> 1.15
	AWS Account with Lambda access
	Mix

Installation
Add Mayfly to your dependencies in mix.exs:
def deps do
  [
    {:mayfly, github: "bmalum/mayfly"}
  ]
end
Run mix deps.get to fetch the dependency.
Usage
Creating a Lambda Function
	Define your handler function
Create a module with a function that accepts a map and returns {:ok, result} or {:error, reason}:
defmodule MyLambda do
  def handle(payload) do
    # Process the payload
    {:ok, %{message: "Hello from Elixir!", received: payload}}
  end
end

	Build your Lambda package
mix lambda.build --zip


	Deploy to AWS Lambda
	Create a new Lambda function in the AWS Console
	Select "Custom runtime" as the runtime
	Upload the generated lambda.zip file
	Set the handler environment variable to Elixir.MyLambda.handle



Advanced Examples
API Gateway Integration
When integrating with API Gateway, structure your response like this:
defmodule Api.Handler do
  def process(event) do
    {:ok, %{
      statusCode: 200,
      headers: %{
        "Content-Type" => "application/json"
      },
      body: Jason.encode!(%{
        message: "Hello from Elixir!",
        path: event["path"],
        method: event["httpMethod"]
      })
    }}
  end
end
Error Handling
defmodule Example.WithError do
  def handle(%{"should_fail" => true}) do
    {:error, "Requested failure"}
  end
  
  def handle(%{"raise_error" => true}) do
    raise "Demonstrating error handling"
  end
  
  def handle(payload) do
    {:ok, %{status: "success", payload: payload}}
  end
end
Handling Binary Data
defmodule ImageGenerator do
  def generate(payload) do
    # Generate image data
    image_data = create_image(payload)
    
    {:ok, %{
      isBase64Encoded: true,
      body: Base.encode64(image_data),
      headers: %{"Content-Type" => "image/png"}
    }}
  end
  
  defp create_image(payload) do
    # Implementation details...
  end
end
Documentation
Online Documentation
Full documentation with guides and API reference is available at elixir-aws-lambda.dev/docs
Quick links:
	Getting Started Guide - Step-by-step tutorial for your first Lambda function
	Deployment Guide - Advanced deployment scenarios and best practices
	API Reference - Complete module and function documentation

Generate Documentation Locally
Generate and view the documentation on your machine:
mix docs
open doc/index.html

Configuration
Environment Variables
	_HANDLER: Required - The Elixir function to call, in the format Elixir.Module.function
	AWS_LAMBDA_RUNTIME_API: Automatically set by AWS Lambda
	LOGLEVEL: Optional - Set to debug for more verbose logging

Build Options
The lambda.build mix task supports the following options:
	--zip: Create a ZIP file for deployment
	--outdir: Specify the output directory (default: current directory)
	--docker: Build using Docker (useful for cross-platform compatibility)

Example:
mix lambda.build --zip --docker

Custom Docker Build Environment
You can provide your own lambda.Dockerfile in your project root to customize the build environment. This is useful when:
	Your dependencies require specific system libraries
	You need a different Erlang/Elixir version
	You want to add native dependencies for NIFs

Create a lambda.Dockerfile in your project root:
FROM amazonlinux:2023

# Add your custom system dependencies
RUN yum install -y imagemagick-devel libxml2-devel

# Install Erlang/Elixir (customize versions as needed)
RUN yum install -y wget tar gcc make && \
    wget https://github.com/erlang/otp/releases/download/OTP-27.2/otp_src_27.2.tar.gz && \
    tar -zxf otp_src_27.2.tar.gz && \
    cd otp_src_27.2 && \
    ./configure --without-javac && \
    make -j$(nproc) && make install && \
    cd / && rm -rf otp_src_27.2*

ENV MIX_ENV=lambda
WORKDIR /mnt/code
RUN mix local.rebar --force && mix local.hex --force
If no lambda.Dockerfile is found in your project, Mayfly will use the default one from the library.
Error Handling
Mayfly provides standardized error handling for Lambda functions:
	Return {:error, reason}: For expected errors
def handle(payload) do
  case validate(payload) do
    :ok -> {:ok, process(payload)}
    {:error, reason} -> {:error, reason}
  end
end

	Raise an exception: For unexpected errors
def handle(payload) do
  # This will be caught and formatted properly
  result = payload["a"] + payload["b"]
  {:ok, %{sum: result}}
end


Errors are formatted according to the AWS Lambda error response format with proper stacktraces.
Deployment
Detailed Deployment Steps
	Build the Lambda package:
mix lambda.build --zip


	Create a new Lambda function:
	Open the AWS Lambda Console
	Click "Create function"
	Choose "Author from scratch"
	Name your function
	Select "Custom runtime" for Runtime
	Create or select an execution role
	Click "Create function"


	Upload the deployment package:
	In the Function code section, click "Upload from"
	Select ".zip file"
	Upload the generated lambda.zip file
	Click "Save"


	Configure the handler:
	In the Runtime settings section, click "Edit"
	Set the Handler to Elixir.YourModule.function_name
	Click "Save"


	Test your function:
	Click "Test"
	Configure a test event
	Click "Test" to invoke your function



Performance
Optimizing Cold Starts
	Increase memory allocation (which also increases CPU power)
	Minimize dependencies in your application
	Consider provisioned concurrency for critical functions

Memory and Timeout Configuration
	Start with at least 512MB of memory for reasonable performance
	Adjust timeout based on your function's processing needs
	Monitor execution times to fine-tune these settings

Troubleshooting
Common Issues
	Handler Not Found: Ensure the _HANDLER environment variable is correctly set to Elixir.Module.function
	Timeout Errors: Check if your function exceeds the Lambda timeout limit
	Memory Issues: Increase the Lambda memory allocation if needed
	Cold Start Performance: Consider increasing the memory allocation to improve cold start times

Debugging Tips
	Set LOGLEVEL environment variable to debug for verbose logging
	Review CloudWatch logs for detailed error information
	Test locally before deployment when possible

Roadmap
	[ ] Build with Docker Image for x86/arm64
	[ ] Build Locally
	[ ] Create ZIP File
	[ ] CDK Sample
	[ ] HexDocs and Hex.pm publishing
	[ ] GitHub Actions CI/CD templates
	[ ] Performance benchmarks and optimizations
	[ ] Framework integrations (Phoenix, etc.)

Community & Contributing
We welcome contributions of all kinds! Here's how you can help:
	Bug Reports: Open an issue describing the bug and how to reproduce it
	Feature Requests: Open an issue describing the desired feature
	Code Contributions: Submit a pull request with your changes
	Documentation: Help improve or translate documentation
	Examples: Share how you're using Mayfly in your projects

Before contributing, please review our:
	Code of Conduct (link)
	Contributing Guidelines (link)

License
Mayfly is licensed under the MIT License. See the LICENSE file for details.


  

    Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
[0.1.0] - 2025-11-21
Added
	Initial release of Mayfly - AWS Lambda Custom Runtime for Elixir
	Core Lambda Runtime API integration with long-polling support
	Handler resolution and execution with proper error handling
	Comprehensive error formatting with stacktraces
	Mix task lambda.build for creating deployment packages
	Docker build support for cross-platform compatibility
	ZIP archive creation for Lambda deployment
	Bootstrap script generation
	Security: Using String.to_existing_atom/1 to prevent atom exhaustion
	Timeout configuration: 5s for responses, infinite for long-polling
	Graceful error handling for missing request IDs and malformed JSON
	OTP supervision tree for fault tolerance
	Comprehensive documentation and README with examples

Features
	Zero boilerplate Lambda function development
	Native Elixir experience with standard {:ok, result} / {:error, reason} patterns
	Support for API Gateway, S3, EventBridge and other AWS event sources
	Proper Elixir stacktraces in Lambda error responses
	Flexible handler configuration via _HANDLER environment variable
	Build tooling with --zip, --docker, and --outdir options

Technical Details
	Elixir ~> 1.15 support
	Single dependency: Jason for JSON encoding/decoding
	Uses Erlang's :httpc for Lambda Runtime API communication
	GenServer-based event loop for continuous invocation processing



  

    Getting Started with Mayfly

This guide will walk you through creating your first Elixir Lambda function using Mayfly.
Prerequisites
	Elixir ~> 1.15 installed
	Mix build tool
	AWS Account with Lambda access
	AWS CLI configured (optional, for deployment)

Installation
Add Mayfly to your project's dependencies in mix.exs:
def deps do
  [
    {:mayfly, github: "bmalum/mayfly"}
  ]
end
Then fetch the dependencies:
mix deps.get

Creating Your First Lambda Function
1. Define Your Handler
Create a new module with a handler function. The handler receives a map (the Lambda event) and returns {:ok, result} or {:error, reason}:
defmodule MyApp.HelloHandler do
  @moduledoc """
  A simple Lambda function that greets the world.
  """

  def handle(event) do
    name = Map.get(event, "name", "World")
    
    {:ok, %{
      message: "Hello, #{name}!",
      timestamp: DateTime.utc_now() |> DateTime.to_iso8601()
    }}
  end
end
2. Build Your Lambda Package
Use the provided Mix task to build a deployment package:
mix lambda.build --zip

This will:
	Build a release in the lambda environment
	Generate a bootstrap script
	Create a lambda.zip file ready for deployment

3. Deploy to AWS Lambda
Using AWS Console
	Go to the AWS Lambda Console
	Click "Create function"
	Choose "Author from scratch"
	Configure:	Function name: my-elixir-function
	Runtime: Custom runtime on Amazon Linux 2023
	Architecture: x86_64 (or arm64 if you built with Docker)


	Click "Create function"
	In the "Code" section, click "Upload from" → ".zip file"
	Upload your lambda.zip file
	In "Runtime settings", click "Edit" and set:	Handler: Elixir.MyApp.HelloHandler.handle


	Click "Save"

Using AWS CLI
# Create the function
aws lambda create-function \
  --function-name my-elixir-function \
  --runtime provided.al2023 \
  --role arn:aws:iam::YOUR_ACCOUNT_ID:role/lambda-execution-role \
  --handler Elixir.MyApp.HelloHandler.handle \
  --zip-file fileb://lambda.zip \
  --timeout 30 \
  --memory-size 512

# Update existing function
aws lambda update-function-code \
  --function-name my-elixir-function \
  --zip-file fileb://lambda.zip

4. Test Your Function
In the AWS Lambda Console:
	Click the "Test" tab
	Create a new test event:{
"name": "Elixir Developer"
}

	Click "Test"

You should see a response like:
{
  "message": "Hello, Elixir Developer!",
  "timestamp": "2025-11-21T10:30:00Z"
}
Handler Patterns
Basic Handler
def handle(event) do
  {:ok, %{result: "success"}}
end
With Error Handling
def handle(event) do
  case validate(event) do
    :ok -> 
      result = process(event)
      {:ok, result}
    
    {:error, reason} -> 
      {:error, reason}
  end
end
With Pattern Matching
def handle(%{"action" => "create"} = event) do
  # Handle create action
  {:ok, %{status: "created"}}
end

def handle(%{"action" => "delete"} = event) do
  # Handle delete action
  {:ok, %{status: "deleted"}}
end

def handle(_event) do
  {:error, "Unknown action"}
end
Environment Variables
Configure your handler using the _HANDLER environment variable in Lambda:
_HANDLER=Elixir.MyApp.HelloHandler.handle
The format is: Elixir.ModuleName.function_name
Next Steps
	Learn about Deployment Strategies
	Explore API Gateway Integration
	See Error Handling Best Practices



  

    Deployment Guide

This guide covers advanced deployment scenarios and best practices for Mayfly Lambda functions.
Build Options
Local Build
Build on your local machine (same architecture as Lambda):
mix lambda.build --zip

Docker Build
Build using Docker for cross-platform compatibility:
mix lambda.build --docker --zip

This ensures your build matches the Lambda execution environment exactly.
Custom Output Directory
Specify where to save the build artifacts:
mix lambda.build --zip --outdir ./deploy

API Gateway Integration
When integrating with API Gateway, structure your responses according to the proxy integration format:
defmodule MyApp.ApiHandler do
  def handle(event) do
    # Extract request details
    path = event["path"]
    method = event["httpMethod"]
    body = event["body"]
    
    # Process request
    response_body = process_request(method, path, body)
    
    # Return API Gateway proxy response
    {:ok, %{
      statusCode: 200,
      headers: %{
        "Content-Type" => "application/json",
        "Access-Control-Allow-Origin" => "*"
      },
      body: Jason.encode!(response_body)
    }}
  end
  
  defp process_request("GET", "/users", _body) do
    %{users: ["Alice", "Bob"]}
  end
  
  defp process_request("POST", "/users", body) do
    user = Jason.decode!(body)
    %{created: user}
  end
  
  defp process_request(_method, _path, _body) do
    %{error: "Not found"}
  end
end
Handling Different HTTP Methods
def handle(%{"httpMethod" => "GET"} = event) do
  handle_get(event)
end

def handle(%{"httpMethod" => "POST"} = event) do
  handle_post(event)
end

def handle(%{"httpMethod" => "PUT"} = event) do
  handle_put(event)
end

def handle(%{"httpMethod" => "DELETE"} = event) do
  handle_delete(event)
end
Error Handling
Returning Errors
Return errors using the standard tuple format:
def handle(event) do
  case validate_input(event) do
    :ok -> 
      {:ok, process(event)}
    
    {:error, message} -> 
      {:error, message}
  end
end
Mayfly will automatically format errors according to Lambda's error response format:
{
  "errorType": "RuntimeError",
  "errorMessage": "Invalid input",
  "stackTrace": "..."
}
Raising Exceptions
You can also raise exceptions, which Mayfly will catch and format:
def handle(event) do
  unless Map.has_key?(event, "required_field") do
    raise "Missing required field"
  end
  
  {:ok, process(event)}
end
Custom Error Types
Define custom error structs for better error handling:
defmodule MyApp.ValidationError do
  defexception [:message, :field]
end

def handle(event) do
  case validate(event) do
    :ok -> 
      {:ok, process(event)}
    
    {:error, field} -> 
      raise MyApp.ValidationError, 
        message: "Validation failed", 
        field: field
  end
end
Event Sources
S3 Events
defmodule MyApp.S3Handler do
  def handle(%{"Records" => records}) do
    results = Enum.map(records, fn record ->
      bucket = get_in(record, ["s3", "bucket", "name"])
      key = get_in(record, ["s3", "object", "key"])
      
      process_s3_object(bucket, key)
    end)
    
    {:ok, %{processed: length(results)}}
  end
end
EventBridge Events
defmodule MyApp.EventBridgeHandler do
  def handle(%{"detail-type" => detail_type, "detail" => detail}) do
    case detail_type do
      "Order Placed" -> 
        process_order(detail)
      
      "User Registered" -> 
        process_registration(detail)
      
      _ -> 
        {:ok, %{status: "ignored"}}
    end
  end
end
SQS Events
defmodule MyApp.SqsHandler do
  def handle(%{"Records" => records}) do
    results = Enum.map(records, fn record ->
      body = record["body"] |> Jason.decode!()
      process_message(body)
    end)
    
    {:ok, %{
      batchItemFailures: []  # Return failed message IDs for retry
    }}
  end
end
Performance Optimization
Memory Configuration
Start with 512MB and adjust based on your function's needs:
aws lambda update-function-configuration \
  --function-name my-function \
  --memory-size 1024

More memory also means more CPU power.
Timeout Configuration
Set appropriate timeouts (default is 3 seconds):
aws lambda update-function-configuration \
  --function-name my-function \
  --timeout 30

Cold Start Optimization
	Keep dependencies minimal
	Use provisioned concurrency for critical functions
	Consider Lambda SnapStart (when available for custom runtimes)

Environment Variables
Set environment variables for configuration:
aws lambda update-function-configuration \
  --function-name my-function \
  --environment Variables="{
    _HANDLER=Elixir.MyApp.Handler.handle,
    DATABASE_URL=postgres://...,
    API_KEY=secret123
  }"

Access in your code:
def handle(event) do
  db_url = System.get_env("DATABASE_URL")
  api_key = System.get_env("API_KEY")
  
  # Use configuration
  {:ok, process(event, db_url, api_key)}
end
Monitoring and Logging
Structured Logging
Use Logger for structured logging:
require Logger

def handle(event) do
  Logger.info("Processing event", event_type: event["type"])
  
  result = process(event)
  
  Logger.info("Event processed successfully", 
    event_type: event["type"],
    duration_ms: 123
  )
  
  {:ok, result}
end
Logs appear in CloudWatch Logs automatically.
Metrics
Track custom metrics using CloudWatch:
def handle(event) do
  start_time = System.monotonic_time(:millisecond)
  
  result = process(event)
  
  duration = System.monotonic_time(:millisecond) - start_time
  Logger.info("MONITORING|#{duration}|milliseconds|ProcessingTime")
  
  {:ok, result}
end
CI/CD Integration
GitHub Actions Example
name: Deploy Lambda

on:
  push:
    branches: [main]

jobs:
  deploy:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v3
      
      - uses: erlef/setup-beam@v1
        with:
          elixir-version: '1.15'
          otp-version: '26'
      
      - name: Install dependencies
        run: mix deps.get
      
      - name: Build Lambda package
        run: mix lambda.build --docker --zip
      
      - name: Deploy to AWS
        env:
          AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY_ID }}
          AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
        run: |
          aws lambda update-function-code \
            --function-name my-function \
            --zip-file fileb://lambda.zip
Best Practices
	Keep handlers simple - Move business logic to separate modules
	Use pattern matching - Handle different event types cleanly
	Return early - Validate input and return errors quickly
	Log appropriately - Use structured logging for better observability
	Test locally - Write unit tests for your handler logic
	Monitor performance - Track cold starts and execution times
	Handle errors gracefully - Always return proper error responses
	Use environment variables - Keep configuration out of code
	Version your functions - Use Lambda versions and aliases
	Set appropriate timeouts - Don't use default 3s for long-running tasks



  

    
Mayfly 
    



      
Mayfly - AWS Lambda Custom Runtime for Elixir.
This module serves as the main application entry point for the Elixir Lambda runtime.
It starts the supervision tree and initializes the Lambda event loop.

      


      
        Summary


  
    Functions
  


    
      
        hello()

      


        Default handler function that can be used for testing.



    


    
      
        start(type, args)

      


        Starts the Mayfly application.



    





      


      
        Functions


        


  
    
      
    
    
      hello()



        
          
        

    

  


  

Default handler function that can be used for testing.
Examples
iex> Mayfly.hello()
:world

  



  
    
      
    
    
      start(type, args)



        
          
        

    

  


  

      

          @spec start(any(), any()) :: {:ok, pid()} | {:error, any()}


      


Starts the Mayfly application.
This function is called automatically by the Elixir runtime when the application starts.
It initializes the supervision tree and starts the Lambda event loop.

  


        

      


  

    
Mayfly.Error 
    



      
Error handling utilities for AWS Lambda functions.
Provides standardized error formatting and conversion functions.

      


      
        Summary


  
    Functions
  


    
      
        format_error(error, stacktrace \\ nil)

      


        Converts various error types to a standardized Lambda error format.



    


    
      
        format_stacktrace(stacktrace)

      


        Formats stacktrace into a string representation.
Returns empty string if stacktrace is nil.



    





      


      
        Functions


        


    

  
    
      
    
    
      format_error(error, stacktrace \\ nil)



        
          
        

    

  


  

      

          @spec format_error(any(), list() | nil) :: map()


      


Converts various error types to a standardized Lambda error format.

  



  
    
      
    
    
      format_stacktrace(stacktrace)



        
          
        

    

  


  

      

          @spec format_stacktrace(list() | nil) :: String.t()


      


Formats stacktrace into a string representation.
Returns empty string if stacktrace is nil.

  


        

      


  

    
Mayfly.Handler 
    



      
Handles the resolution and execution of Lambda function handlers.

      


      
        Summary


  
    Functions
  


    
      
        default_handler(payload)

      


        Default handler function used when no handler is specified.



    


    
      
        execute(payload, arg)

      


        Executes the handler function with the given payload.
Handles proper error conversion and response formatting.



    


    
      
        resolve()

      


        Resolves the handler module and function from environment variables.
Returns a tuple with {module, function}.



    





      


      
        Functions


        


  
    
      
    
    
      default_handler(payload)



        
          
        

    

  


  

      

          @spec default_handler(map()) :: {:ok, String.t()}


      


Default handler function used when no handler is specified.

  



  
    
      
    
    
      execute(payload, arg)



        
          
        

    

  


  

      

          @spec execute(
  map(),
  {module(), atom()}
) :: {:ok, any()} | {:error, map()}


      


Executes the handler function with the given payload.
Handles proper error conversion and response formatting.

  



  
    
      
    
    
      resolve()



        
          
        

    

  


  

      

          @spec resolve() :: {module(), atom()}


      


Resolves the handler module and function from environment variables.
Returns a tuple with {module, function}.
Examples
iex> System.put_env("_HANDLER", "Elixir.MyModule.my_function")
iex> Mayfly.Handler.resolve()
{MyModule, :my_function}

  


        

      


  

    
Mayfly.Helpers 
    



      
Helper functions for AWS Lambda runtime.

      


      
        Summary


  
    Functions
  


    
      
        get_request_id(headers)

      


        Extracts the request ID from Lambda invocation headers.



    





      


      
        Functions


        


  
    
      
    
    
      get_request_id(headers)



        
          
        

    

  


  

      

          @spec get_request_id(list()) :: binary() | nil


      


Extracts the request ID from Lambda invocation headers.

  


        

      


  

    
Mayfly.Loop 
    



      
GenServer that handles the AWS Lambda event loop.
Continuously polls for new invocations and processes them.

      


      
        Summary


  
    Functions
  


    
      
        child_spec(init_arg)

      


        Returns a specification to start this module under a supervisor.



    


    
      
        handle_info(msg, state)

      


        Handles the main event loop for processing Lambda invocations.



    


    
      
        init(state)

      


        Initializes the GenServer and triggers the first loop iteration.



    


    
      
        start_link(state)

      


        Starts the Lambda event loop GenServer.



    





      


      
        Functions


        


  
    
      
    
    
      child_spec(init_arg)



        
          
        

    

  


  

Returns a specification to start this module under a supervisor.
See Supervisor.

  



  
    
      
    
    
      handle_info(msg, state)



        
          
        

    

  


  

Handles the main event loop for processing Lambda invocations.

  



  
    
      
    
    
      init(state)



        
          
        

    

  


  

Initializes the GenServer and triggers the first loop iteration.

  



  
    
      
    
    
      start_link(state)



        
          
        

    

  


  

Starts the Lambda event loop GenServer.

  


        

      


  

    
Mayfly.Runtime 
    



      
Handles communication with the AWS Lambda Runtime API.
Provides functions for fetching invocations and sending responses.

      


      
        Summary


  
    Functions
  


    
      
        init_error(error)

      


        Sends an initialization error to the Lambda Runtime API.



    


    
      
        invocation_error(aws_req_id, error)

      


        Sends an invocation error to the Lambda Runtime API.



    


    
      
        invocation_response(aws_req_id, response)

      


        Sends a successful response for a Lambda invocation.



    


    
      
        next_invocation()

      


        Fetches the next invocation from the Lambda Runtime API.
Returns {:ok, {protocol, headers, body}} on success or {:error, reason} on failure.



    


    
      
        service_endpoint()

      


        Returns the base service endpoint for the Lambda Runtime API.



    





      


      
        Functions


        


  
    
      
    
    
      init_error(error)



        
          
        

    

  


  

      

          @spec init_error(map()) :: {:ok, any()} | {:error, any()}


      


Sends an initialization error to the Lambda Runtime API.

  



  
    
      
    
    
      invocation_error(aws_req_id, error)



        
          
        

    

  


  

      

          @spec invocation_error(binary(), map()) :: {:ok, any()} | {:error, any()}


      


Sends an invocation error to the Lambda Runtime API.

  



  
    
      
    
    
      invocation_response(aws_req_id, response)



        
          
        

    

  


  

      

          @spec invocation_response(binary(), any()) :: {:ok, any()} | {:error, any()}


      


Sends a successful response for a Lambda invocation.

  



  
    
      
    
    
      next_invocation()



        
          
        

    

  


  

      

          @spec next_invocation() :: {:ok, {atom(), list(), binary()}} | {:error, any()}


      


Fetches the next invocation from the Lambda Runtime API.
Returns {:ok, {protocol, headers, body}} on success or {:error, reason} on failure.

  



  
    
      
    
    
      service_endpoint()



        
          
        

    

  


  

      

          @spec service_endpoint() :: String.t()


      


Returns the base service endpoint for the Lambda Runtime API.

  


        

      


  

    
Mayfly.Supervisor 
    



      
Supervisor for the Mayfly application.
This module defines the supervision tree for the Lambda runtime,
managing the lifecycle of the Lambda event loop.

      


      
        Summary


  
    Functions
  


    
      
        child_spec(init_arg)

      


        Returns a specification to start this module under a supervisor.



    


    
      
        init(atom)

      


        Initializes the supervisor with the Lambda event loop as its child.



    


    
      
        start_link()

      


        Starts the supervisor.



    





      


      
        Functions


        


  
    
      
    
    
      child_spec(init_arg)



        
          
        

    

  


  

Returns a specification to start this module under a supervisor.
See Supervisor.

  



  
    
      
    
    
      init(atom)



        
          
        

    

  


  

      

          @spec init(:ok) :: {:ok, {Supervisor.sup_flags(), [Supervisor.child_spec()]}}


      


Initializes the supervisor with the Lambda event loop as its child.

  



  
    
      
    
    
      start_link()



        
          
        

    

  


  

      

          @spec start_link() :: {:ok, pid()} | {:error, any()}


      


Starts the supervisor.

  


        

      


  

    
mix lambda.build 
    



      
A Mix task for building AWS Lambda deployment packages for Elixir applications.
This task creates a deployment package for AWS Lambda, including:
	Building a release using mix release
	Creating a bootstrap script
	Optionally building in a Docker container
	Optionally creating a ZIP archive for deployment

Usage
mix lambda.build [options]
Options
--zip, -z      - Create a ZIP file for deployment
--outdir, -o   - Specify the output directory (default: current directory)
--docker, -d   - Build using Docker (useful for cross-platform compatibility)
--help, -h     - Print this help message
Examples
# Build a release
mix lambda.build

# Build a release and create a ZIP file
mix lambda.build --zip

# Build using Docker and create a ZIP file
mix lambda.build --docker --zip

# Specify an output directory
mix lambda.build --zip --outdir ./deploy

      


      
        Summary


  
    Functions
  


    
      
        bootstrap_content(project_name)

      


        Generates the content for the bootstrap script.



    


    
      
        build_release()

      


        Builds the release using mix release.



    


    
      
        create_bootstrap(opts)

      


        Creates the bootstrap file.



    


    
      
        create_zip_archive(opts, bootstrap_path)

      


        Creates a ZIP archive if requested.



    


    
      
        handle_docker_build(opts, bootstrap_path)

      


        Handles Docker build if requested.



    


    
      
        parse_and_validate_args(args)

      


        Parses and validates command line arguments.



    


    
      
        print_help()

      


        Prints help information.



    


    
      
        print_summary(opts)

      


        Prints a summary of the build process.



    


    
      
        restore_environment(old_mix_env)

      


        Restores the original environment.



    


    
      
        run(args)

      


        Runs the Lambda build task.



    


    
      
        run_command(cmd, args)

      


        Runs a system command and handles the result.



    


    
      
        setup_environment()

      


        Sets up the build environment.



    





      


      
        Functions


        


  
    
      
    
    
      bootstrap_content(project_name)



        
          
        

    

  


  

      

          @spec bootstrap_content(atom()) :: String.t()


      


Generates the content for the bootstrap script.

  



  
    
      
    
    
      build_release()



        
          
        

    

  


  

      

          @spec build_release() :: :ok | {:error, String.t()}


      


Builds the release using mix release.
Returns :ok if successful.

  



  
    
      
    
    
      create_bootstrap(opts)



        
          
        

    

  


  

      

          @spec create_bootstrap(keyword()) :: {:ok, String.t()} | {:error, String.t()}


      


Creates the bootstrap file.
Returns {:ok, bootstrap_path} if successful.

  



  
    
      
    
    
      create_zip_archive(opts, bootstrap_path)



        
          
        

    

  


  

      

          @spec create_zip_archive(
  keyword(),
  String.t()
) :: :ok | {:error, String.t()}


      


Creates a ZIP archive if requested.
Returns :ok if successful or if ZIP creation was not requested.

  



  
    
      
    
    
      handle_docker_build(opts, bootstrap_path)



        
          
        

    

  


  

      

          @spec handle_docker_build(
  keyword(),
  String.t()
) :: :ok | {:error, String.t()}


      


Handles Docker build if requested.
Returns :ok if successful or if Docker build was not requested.

  



  
    
      
    
    
      parse_and_validate_args(args)



        
          
        

    

  


  

      

          @spec parse_and_validate_args([String.t()]) ::
  {:ok, keyword()} | {:halt, :help} | {:error, String.t()}


      


Parses and validates command line arguments.
Returns {:ok, opts} if successful, {:halt, :help} if help was requested,
or {:error, reason} if validation fails.

  



  
    
      
    
    
      print_help()



        
          
        

    

  


  

      

          @spec print_help() :: :ok


      


Prints help information.

  



  
    
      
    
    
      print_summary(opts)



        
          
        

    

  


  

      

          @spec print_summary(keyword()) :: :ok


      


Prints a summary of the build process.

  



  
    
      
    
    
      restore_environment(old_mix_env)



        
          
        

    

  


  

      

          @spec restore_environment(String.t() | nil) :: :ok


      


Restores the original environment.
Returns :ok if successful.

  



  
    
      
    
    
      run(args)



        
          
        

    

  


  

      

          @spec run([String.t()]) :: any()


      


Runs the Lambda build task.
This is the main entry point for the mix task, orchestrating the build process.

  



  
    
      
    
    
      run_command(cmd, args)



        
          
        

    

  


  

      

          @spec run_command(String.t(), [String.t()]) ::
  {:ok, String.t()} | {:error, String.t()}


      


Runs a system command and handles the result.
Returns {:ok, output} if successful, or {:error, reason} if the command fails.

  



  
    
      
    
    
      setup_environment()



        
          
        

    

  


  

      

          @spec setup_environment() :: String.t() | nil


      


Sets up the build environment.
Sets MIX_ENV to "lambda" and returns the original value.

  


        

      


  OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();




OEBPS/assets/logo.png





